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Abstract

Decoding behavior, perception, or cognitive state directly from neural signals is critical for brain-computer
interface research and an import tool for systems neuroscience. In the last decade, deep learning has become
the state-of-the-art method in many machine learning tasks ranging from speech recognition to image segmen-
tation. The success of deep networks in other domains has led to a new wave of applications in neuroscience.
In this article, we review deep learning approaches to neural decoding. We describe the architectures used for
extracting useful features from neural recording modalities ranging from spikes to fMRI. Furthermore, we ex-
plore how deep learning has been leveraged to predict common outputs including movement, speech, and vision,
with a focus on how pretrained deep networks can be incorporated as priors for complex decoding targets like
acoustic speech or images. Deep learning has been shown to be a useful tool for improving the accuracy and
flexibility of neural decoding across a wide range of tasks, and we point out areas for future scientific development.
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1 Introduction

Using signals from the brain to make predictions about behavior, perception, or cognitive state, i.e., “neural
decoding”, is becoming increasingly important within neuroscience and engineering. One common goal of neural
decoding is to create brain computer interfaces, where neural signals are used to control an output in real time [1,
2]. This could allow patients with neurological or motor diseases or injuries to, for example, control a robotic arm
or cursor on a screen, or produce speech through a synthesizer. Another common goal of neural decoding is to gain
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a better scientific understanding of the link between neural activity and the outside world. To provide insight,
decoding accuracy can be compared across brain regions, cell types, different types of subjects (e.g., with different
diseases or genetics), and different experimental conditions [3–11]. Additionally, the representations learned by
neural decoders can be probed to better understand the structure of neural computation [12–16]. These uses of
neural decoding span many different neural recording modalities and span a wide range of behavioral outputs
(Fig. 1A).

Within the last decade, many researchers have begun to successfully use deep learning approaches for neural
decoding. A decoder can be thought of as a function approximator, doing either regression or classification
depending on whether the output is a continuous or categorical variable. Given the great successes of deep
learning at learning complex functions across many domains [17–26], it is unsurprising that deep learning has
become a popular approach in neuroscience. Here, we review the many uses of deep learning for neural decoding.
We emphasize how different deep learning architectures can induce biases that can be beneficial when decoding
from different neural recording modalities and when decoding different behavioral outputs. We aim to provide a
review that is both useful to deep learning researchers looking to understand current neural decoding problems
and to neuroscience researchers looking to understand the state-of-the-art in neural decoding.

2 Deep learning architectures

At their core, deep learning models share a common structure across architectures: 1) simple components formed
from linear operations (typically addition, matrix multiplication, or convolution) plus a nonlinear operation (for
example, rectification or a sigmoid nonlinearity); and 2) composition of these simple components to form complex,
layered architectures [27]. The simplest fully-connected neural networks combine matrix multiplication and
nonlinearities. While more complex deep network layer types, e.g., graph neural networks [28] or networks that
use attention mechanisms [29], have been developed, they have not seen much use in neuroscience. Additionally,
given that datasets in neuroscience typically have limited numbers of trials, shallower neural networks are often
used for neural decoding compared with the networks used in common machine learning tasks.

Recurrent neural networks (RNNs) act on a sequence of inputs of potentially varying length, which occurs
in neuroscience data (e.g., trials of differing duration). This is unlike a fully-connected network, which requires
a fixed dimensionality input. In an RNN, the inputs, Xt, are then projected (with weights wX) into a hidden
layer, Ht, which recurrently connects to itself (with weights wH) across time (Fig. 1B)

Ht+1 = f(wH ·Ht + wX ·Xt)

Yt = g(wY ·Ht)
(1)

where f(·) and g(·) are nonlinearities and Yt is the RNN output. Finally, the hidden layer projects to an output,
Yt which can itself be a sequence (Fig. 1B), or just a single data point. Commonly used RNN architectures like
LSTMs and GRUs [22, 27, 30] have multiplicative “gating” operations in addition to element-wise nonlinearities.
Recurrent networks are commonly used for neural decoding since they can flexibly incorporate information across
time.

Convolutional neural networks (CNNs) can be trained on input and output data in many different formats.
For example, convolutional architectures can take in structured data (1d timeseries, 2d images, 3d volumes) of
arbitrary size [23, 27, 31, 32]. Input neural data, X, may have one or more channels indexed by c (which may be
combined in a filter as in Eq 2 or operated on individually) and temporal or spatial dimensions indexed by (t, . . .).
A convolutional layer has weights with multiple filters (f), that combine across channels, that have temporal
(or spatial) extent (T, . . .) followed by a nonlinearity, g(·). For example, for a 1d convolution the activations in
a layer are calculated as

ht,f = g(

T−1∑
τ=0,c

wτ,f,cXt+τ,c). (2)

The 2d and 3d extensions have more output indices in addition to t for the additional dimensions, and more
dimensions are summed over for each filter. The convolutional layers will then learn filters of the corresponding
dimensions, in order to extract meaningful local structure (Fig. 1C). The convolutional layers are commonly
used if there are important features that are translation invariant, as in images. This is done hierarchically, in
order to learn filters of varying scales (i.e., varying temporal or spatial frequency content), which is a useful prior
for multi-scale data, such as images. Next, depending on the output that is being predicted, the convolutional
layers are fed into other types of layers to produce the final output (e.g., into fully connected layers to classify
an image).

Weight-sharing, where the values of some parameters are constrained to be the same, is often used for neural
decoding. For instance, the parameters of a convolutional (in time) layer can be made the same for differing
input channels or neurons, so that these different inputs are filtered in the same way. For neural decoding, this

2



can be beneficial for learning a shared set of data-driven features for different recording channels (e.g., a relevant
frequency pattern for ECoG datasets) as an alternative to human-engineered features.

Training a neural decoder uses supervised learning, where the network’s parameters are trained to predict
target outputs based on the inputs. Recent work has combined supervised deep networks with unsupervised
learning techniques, which learn lower dimensional representations that reproduce one data source. One common
unsupervised method, generative adversarial networks (GANs) [33, 34], generate an output, e.g., an image, given
a vector of noise as input. GANs are trained to produce images that fool a classifier deep network about whether
they are real versus generated images. Another method is convolutional autoencoders, which are trained to
encode an image into a latent state, and then reconstruct a high fidelity version [35]. These unsupervised
methods can produce representations of the decoding input or output that are sometimes more conducive for
decoding and can potentially leverage larger datasets for training than are available for neural decoding.

3 Stages of neural decoding

In order to go from the raw neural signal to the final predicted output (e.g. speech), the neural decoding pipeline
can be conceptually broken down into a few components, each of which can incorporate deep learning.

1. Preprocessing / Feature Engineering. First, the raw neural signals are processed to create features that
are beneficial for neural decoding. Sometimes, these features are hand-engineered based on previous knowledge,
traditionally with the goal of creating features that are most compatible with linear decoders. More recently,
supervised feature engineering has been incorporated into deep learning architectures. That is, a more raw form of
the input is provided into the neural decoder, and a first stage of the deep network decoder will automatically learn
to extract relevant features. Specific neural network architectures can be beneficial for this automatic feature
engineering (Fig. 2). It is also possible to generate features from the neural data with deep learning [42, 43] in
an unsupervised manner and then use those features with simple linear decoders.

2. Mapping from features to final (or intermediate) output. This central part transforms the features to an
output representation, and deep learning tools allow this mapping to be a flexible nonlinear function.

3. Mapping from intermediate to final output (optional). Neural decoding is used to predict many outputs,
including movement, speech, vision, and more. Sometimes, the output variable will be directly predicted from
the neural inputs, e.g., when predicting movement velocities (and thus this stage is not relevant). Other times,
the neural decoder may be trained to predict some intermediate representation, which has a predetermined
mapping to the output (Fig. 3). For example, a GAN can be trained to generate an image using a small number
of latent variables. This mapping from the low-dimensional variables to images can be learned without having to
simultaneously record neural activity. Then, to decode an image from neural activity, one can train the neural
decoder to predict the latent variables to be fed into the GAN, rather than the entire high-dimensional image.
This two-step approach can be especially beneficial when the output data is complex and high-dimensional, as
is often the case in vision or speech. In effect, the generative model can act as a prior on the underconstrained
decoding solution.

We expand on these stages below - first focusing on neural recordings and how they are transformed into
features, and then focusing on the deep learning methods used for predicting the final outputs of neural decoding.

4 The inputs of decoding: neural recording modalities and feature
engineering

To understand how varying neural network architectures can be preferable for processing different neural sig-
nals, it is important to understand the basics of neural recording modalities. These modalities differ in their
invasiveness, and their spatial and temporal precision.

4.1 Spikes

The most invasive recordings involve inserting electrodes into the brain to record voltages. This allows exper-
imentalists to record spikes, or action potentials, the basic unit of neural signaling. Action potentials are the
fast electrical transients that individual neurons use to signal and are triggered when a neuron’s membrane
potential depolarizes past its threshold. To get binary spiking events, the recorded signals are high-pass filtered
and thresholded. They are then often sorted into waveforms attributed to individual neurons, sometimes using
deep learning tools [44, 45]. Datasets with spikes are thus binary time courses from all of the recording channels
or neurons (Fig. 1A). Spikes are more commonly recorded from animal models than humans because of their
invasive nature.
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Figure 1: Schematics. A: Schematics of neural decoding, which can use many different neural modalities as input
(top) and can predict many different outputs (bottom), such as movement velocities (left) [36], a waveform of
speech (center) [37], or visual images (right) [38]. Embedded figures are adapted from [39–41]. B: A schematic
of a standard recurrent neural network (RNN). Each arrow represents a linear transformation followed by a
nonlinearity. Arrows of the same color represent the same transformations occurring. The circles representing the
hidden layer typically contain many hidden units. More sophisticated versions of RNNs, which include gates that
control information flow through various parts of the network, are commonly used. For example, see [27] for a
schematic of an LSTM. C: A schematic of convolutional neural networks (CNNs). A convolutional transformation
takes a learned filter and convolves it with the input, and then passes this through a nonlinearity. As an example
of a 1-dimensional convolutional transformation (top), as may be the case a single time series, a filter of length 3
(for example) is multiplied element-wise with all input segments of length 3 to get the values of the next network
layer. In CNNs, typically multiple filters (here, filter 1 and filter 2) are learned within each layer, and the outputs
of all filters are combined in a subsequent layer. In our example of 2-dimensional convolutional transformation
(bottom), as may be the case for spatial data, a 2×2 filter is multiplied pixel-wise with all 2×2 blocks to get the
values of the next layer in the network. Convolutions can also occur in three dimensions for neural decoding.
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For use in neural decoding, spikes are typically first converted into firing rates by determining the number
of spikes in time bins, sometimes with additional temporal smoothing. Then, these firing rates are fed into the
neural decoder. Commonly, these firing rates are considered the relevant features, and thus additional neural
network architectures are not used to extract unknown features from the input.

One form of feature engineering that is used for spike trains, especially when many neurons are recorded, is
dimensionality reduction. That is, a lower-dimensional representation of the firing rates is used to predict the
outputs. This dimensionality reduction can use a variety of methods, from classical linear methods, e.g. PCA,
to deep learning approaches, e.g. autoencoders [43]. This dimensionality reduction step is usually done prior to
decoding the output, but it is also possible to incorporate this step into a single neural network decoder [46], so
that the learned lower-dimensional representations are particularly relevant for predicting the output. We note
that dimensionality reduction is not specific to decoding with spiking activity, but can also be applied to the
neural recording modalities described below [46, 47].

Finally, in future research, it might be advantageous to provide a more raw form of spiking as input, rather
than binned spike counts. Then, one could use deep learning architectures to do feature engineering. For example,
with binary spiking events as input, the best size and temporal placement of time bins could be automatically
determined, or even features related to the precise timing of spikes could be learned. It was also recently shown
that using the envelope of spiking activity, a continuous signal, followed by feature extraction within a neural
network, was able to improve decoding performance [48].

4.2 Calcium imaging

Another invasive technique for recording individual neurons’ activities is calcium imaging, which uses microscopy
to capture images of fluorescent calcium indicators that are sensitive to neurons’ spiking activity [49]. These
calcium indicators are genetically encoded within neurons in animal models, often within specific neuron types.
The raw outputs of calcium imaging are videos: pixels measure fluorescence at the times when, and locations
where, neurons are active. Calcium imaging is only used with animal models.

When analyzing calcium imaging data, the videos are typically preprocessed to extract time traces of fluores-
cences over time for each neuron [50]. Sometimes, additional processing will be done to estimate spiking events
from the calcium traces [51]. Deep learning tools exist for both of these processing steps [52, 53]. For decoding,
either the fluorescences, or the estimated firing rates (via the estimated spike trains), are then commonly used as
input. While it could be possible to develop an end-to-end neural decoder that works with the videos as input,
this may prove challenging given the potential for overfitting with high-dimensional input.

4.3 Wideband, LFPs, EEG, and ECoG

The electrode recordings for spikes simultaneously record local field potentials (LFPs), which are the low-pass
filtered version (typically below ∼200Hz) of the same recorded voltage. LFPs are thought to be the sum of
input activity of local neurons [54]. When all voltage is included across frequency bands, the voltage is generally
referred to as wide-band activity. Datasets with LFP and wide-band are continuous time courses of voltages from
all the recording channels (Fig. 1A). Note that traditionally, due to the distance between recording electrodes
being greater than the spatial precision of recording, spatial relationships between electrodes are not utilized for
neural decoding.

Electrical potentials measured from outside of the brain, that is electrocorticography (ECoG) and electroen-
cephalography (EEG), are common neural recording modalities used in humans. ECoG recordings are from grids
that record electrical potentials from the surface of the cortex, require surgical implantation, and often cover
large functional areas of the cortex. EEG is a noninvasive method that records from the surface of the scalp
from up to hundreds of spatially distributed channels. Like LFPs, datasets from ECoG and EEG recordings are
continuous time courses of electrical potentials across recording channels (Fig. 1A), but here the spatial layout
of the channels is also sometimes used in decoding. Note that as these electrical recording methods get less
invasive, spatial precision decreases (from spikes to LFP to ECoG to EEG), which can lead to inferior decoding
performance [55, 56]. Still, all these electrical signals can be recorded at high temporal resolution (100s-1000s of
Hz) which make them good candidates for fast time-scale decoding.

When decoding from wide-band, LFP, EEG, and ECoG data, it is common to first extract spectrotemporal
features from the data, for example the signals in specific frequency bands. Sometimes, only “task-relevant”
frequencies will be used for decoding - for instance, using high gamma frequencies in ECoG to decode speech [57,
58] (Fig. 2A). More frequently, many frequencies will be included, to better understand which are contributing
to decoding [15, 59]. In general, these extracted features can then be put into almost any type of neural decoder,
such as linear (or logistic) regression or a deep neural network (e.g. [60]).

It is also possible to let a deep learning architecture do more of the feature extraction. One approach is
to first convert each electrode’s signal into a frequency domain representation over time (i.e., a spectrogram),

5



often via a wavelet transform. Then, this 2-dimensional representation (like an image) is provided as input to a
CNN [56, 61–63] (Fig. 2B). If multiple electrode channels are being used for decoding, each channel can be fed
into an independent CNN, or alternatively, the CNN weights for each channel can be shared [56]. The CNN will
then learn the relevant frequency domain representation for the decoding.

Another approach is to provide the raw input signals into a deep learning architecture (Fig. 2C). To learn
temporal features, typically the signal is fed into a 1-dimensional CNN, where the convolutions occur in the time
domain. This has been done with a standard CNN [64], in addition to variant architectures. Ahmadi et al. [65]
used a temporal convolutional network, which is a more complex version of a 1-dimensional CNN that (among
other things) allows for multiple timescales of inputs to affect the output. Li et al. [66] used parameterized versions
of temporal filters that target synchrony between electrodes. These convolutional approaches will automatically
learn temporal filters (like frequency bands) that are relevant for decoding.

In addition to temporal structure, there is often spatial structure of the electrode channels that can also
be leveraged for neural decoding (Fig. 2A). Convolutional filters can be used in the spatial domain to learn
spatial representations that are relevant for decoding, for example local functional correlation structure. It
is common for the temporal filters and spatial filters to be learned in successive layers of the network, either
temporal followed by spatial [67, 68] or vice-versa [69, 70]. Additionally, 3-dimensional convolutional filters
can be learned that simultaneously incorporate both temporal and (2-dimensional) spatial dimensions [37] or
3 spatial dimensions [71]. Including spatial filters, which is most common in EEG and ECoG, can help learn
spatial motifs that are most relevant for the task. Moreover, from a practical perspective, convolutional networks
are an efficient way of processing high-dimensional spatial data.

4.4 fMRI and other non-invasive modalities

Magnetoencephalography (MEG), functional near infrared spectroscopy (fNIRS), and functional magnetic reso-
nance imaging (fMRI) are also noninvasive recording modalities which are most often used in human decoding
experiments. In this paper, amongst these non-invasive modalities, we primarily consider examples of decoding
from fMRI. fMRI measures blood oxygenation (a proxy for neural activity), through its absorption of light and
with resonance imaging respectively, and its temporal resolution are temporally limited by its dynamics. fMRI
datasets contain activity signals in different “voxels” (locations) of the brain over time. Due to the limited
temporal resolution, sometimes the temporal continuity of this data is not used for decoding purposes (Fig. 1A).

In fMRI, feature engineering is often done by hand. Commonly, the fMRI voxels that are used for decoding
are subselected by hand or with statistical tests. Additionally, other hand-engineered metrics like functional
connectivity are sometimes used as decoder inputs [72, 73]. As in EEG and ECoG, CNNs can be used to
automatically extract features. For instance, spatial features can be learned by inputting the entire set of voxels
into a 3-dimensional CNN [71, 74].
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Figure 2: Feature engineering for neural decoding. Relevant features of neural data can be engineered completely
by hand (left), automatically learned within a deep neural network (right), or somewhere in between. For all plots,
the red box indicates a set of features across time, space, or frequency which will be filtered together by the first
layer’s convolutional or recurrent window. The red arrows indicate axes along which convolution or recurrence are
performed. Sample data from [40]. A: High gamma amplitude, which is selected from a large filterbank of features
from B, is shown spatially laid out in the ECoG grid locations. Deep network filters combine hand-engineered
high gamma features across space and time. B: Spectrotemporal wavelet decomposition of one channel of the raw
data, from C, may be used as the input to a deep network. The deep network filter shown combines features
across frequency and time and can be shared across channels. C: Raw electrical potential recorded using ECoG
across channels. The deep network filter shown combines features across time and can be shared across channels.
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Table 1: Neural datasets and deep learning. Across the outputs of movement, speech, and vision,
we overview a non-exhaustive list of deep learning applications to neural decoding. The column
“Intermediate var.” refers to whether an intermediate variable was decoded, which was then used to
predict the output. In papers where the goal was to compare many methods rather than focusing
on a single method, we put a high performing method in the “Architecture” column. Lin. Reg.,
Linear Regression; Log. Reg., Logistic Regression; PCA, Principal Components Analysis; WF,
Wiener Filter; WC, Wiener Cascade; FC, fully connected network; RNN, standard recurrent neural
network; GRU, Gated recurrent unit network; LSTM, Long short term memory network; SVR,
support vector regression; SVM, support vector machine; PLDS, Poisson linear dynamical system;
TCN, Temporal Convolutional Network; LDA, linear discriminant anallysis; HMM, hidden markov
model; (Bi)LSTM/GRU, (Bidirectional) Long Short-Term Memory/Gated Recurrent Unit; ASR,
Automatic Speech Recognition

Paper Decoding objective Neural modality (sub-
ject)

Architecture Methods compared
against

Intermediate
var.

Real-time

Movement
Sussillo et al. [36] Predict cursor movement

on screen
Spikes (NHP) Echostate network KF No Yes

Sussillo et al. [75] Predict cursor movement
on screen, stitch across
days

Spikes (NHP) Multiplicative RNN KF No Yes

Pandarinath et al. [43] Predict reach kinemat-
ics, stitch across days

Spikes (NHP, Human) Recurrent autoencoder
+ Lin. Reg.

Lin. Reg., GPFA + Lin.
Reg.

No No

Glaser et al. [39] Predict reach kinematics Spikes (NHP) LSTM WF, WC, KF, Naive
Bayes, SVR, XGBoost,
FC, RNN, Ensemble

No No

Makin et al. [76] Predict reach kinematics Spikes (NHP) Restricted boltzmann
machine variant

WF, KF, Unscented KF No No

Ahmadi et al. [60] Predict reach kinematics LFP, Spikes (NHP) LSTM KF No No
Ahmadi et al. [65] Predict reach kinematics LFP (NHP) TCN LSTM No No
Ahmadi et al. [48] Predict reach kinematics Spikes (NHP) QuasiRNN WF, WC, KF, Unscented

KF, RNN, GRU, LSTM
No No

Park and Kim [77] Predict reach kinematics Spikes (NHP) LSTM KF Speed, direction No
Li et al. [78] Predict forelimb reach lo-

cation
Calcium imaging
(Mouse)

CNN None No No

Wang et al. [79] Predict hindlimb kine-
matics

Spikes (NHP) LSTM WF, PLDS+WF, XG-
Boost, RNN,

No No

Nakagome et al. [80] Predict hindlimb kine-
matics

EEG (Human) GRU WF, Ridge Reg., Un-
scented KF, TCN,
LSTM, Quasi RNN,
CatBoost

No No

Tseng et al. [81] Predict reaching and
hindlimb kinematics

Spikes (NHP) Multilayer LSTM WF, KF, Unscented KF,
LSTM

No No
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Paper Decoding objective Neural modality (sub-
ject)

Architecture Methods compared
against

Intermediate
var.

Real-time

Xie et al. [69] Predict finger kinematics ECoG (Human) CNN+LSTM Lin. Reg., Least An-
gle Reg., Random Forest,
LSTM

No No

Petrosuan et al. [70] Predict finger kinematics ECoG (Human) CNN WF No No
Naufel et al. [82] Predict wrist EMG Spikes (NHP) LSTM WF, WC No No
Farshchian et al. [83] Predict wrist EMG,

stitch across days
Spikes (NHP) Recurrent autoencoder

+ adversarial domain
adaptation network for
alignment

CCA, KL Divergence
minimization for align-
ment

No No

Schwemmer et al. [84] Classify wrist, index
movements

Wide-band (Human) LSTM+CNN SVM No Yes

Skomrock et al. [85] Classify hand, wrist, in-
dex movements

Wide-band (Human) LSTM+CNN SVM No Yes

Nurse et al. [86] Classify hand squeeze EEG (Human) CNN None No No
Pan et al. [87] Classify hand gestures ECoG (Human) LSTM Log. Reg., SVM, FC No No
Elango et al. [88] Classify finger move-

ments
ECoG (Human) LSTM LDA, HMM No No

Du et al. [89] Classify finger move-
ments

ECoG (Human) FC + Multi-layer LSTM SVM No No

Speech
Livezey et al. [15] Classify produced speech

syllable
ECoG (Human) FC Log. Reg., Lin. SVM Yes

Sereshkeh et al. [90] Classify yes/no/rest EEG (Human) FC LDA, Lin. SVM, Poly.
SVM, Naive Bayes, kNN

Yes No

Wang et al. [91] Classify produced phrase MEG (Human) FC GMM Yes No
Dash et al. [92] Classify imagined and

produced phrase
MEG (Human) CNN FC None No

Wilson et al. [93] Classify produced
phonemes

LFP (Human), Unsorted
spikes

BiGRU Log. Reg. None No

Yang et al. [58] Reconstruct perceived
speech spectrogram

ECoG (Human) FC Lin. Reg. Yes No

Heelan et al. [94] Reconstruct perceived
speech/call spectrogram

Spikes (NHP) LSTM FC, RNN, GRU, KF,
Weiner Filter, Weiner
Cascade

Yes No

Angrick et al. [37] Speech reconstruction ECoG (Human) 3dCNN + Wavenet None Spectrogram No
Anumanchipalli et al. [95] Produced speech synthe-

sis
ECoG (Human) BiLSTM + BiLSTM +

Synthesizer
Ablation Articulator

kinematics
No

Sun et al. [96] Speech recognition ECoG (Human) BiLSTM + CNN LSTM + ASR, Ablation Yes No
Makin et al. [97] Speech recognition ECoG (Human) CNN + BiLSTM HMM, Ablation Yes No
Krishna et al. [98] Speech recognition,

Speech reconstruction
EEG (Human) RNN, GAN Ablation None No
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Paper Decoding objective Neural modality (sub-
ject)

Architecture Methods compared
against

Intermediate
var.

Real-time

Willett et al. [99] Reconstruct text Spikes (Human) GRU KF+HMM on moving
cursor to letters

Imagined hand-
writing

Yes

Vision
Qiao et al. [100] Classify visual stimuli fMRI (Human) CNN feature selection +

BiLSTM
Decision Tree, RF, Ad-
aBoost, Lin. SVM, Ker-
nel SVM, FC

Yes No

Ellis and Michaelides [101] Classify visual stimuli Calcium imaging
(Mouse)

CNN Lin. SVM, FC Yes No

Güçlütürk et al. [38] Reconstruct perceived
faces

fMRI (Human) Bayesian CNN + GAN Bayesian Linear + GAN No No

Parthasarathy et al. [35] Reconstruct images Spikes (NHP) Lin. Reg. + CNN Au-
toencoder

Low-fidelity image No

St-Yves and Naselaris [102] Reconstruct images fMRI (Human) CNN+dAE+GAN None No No
Wen et al. [103] Reconstruct and classify

images
fMRI (Human) Lin. Reg. + CNN None CNN activations No

Seeliger et al. [104] Reconstruct images fMRI (Human) Lin. Reg. + GAN +
CNN

None GAN inputs No

Shen et al. [105] Reconstruct images fMRI (Human) Lin. Reg. + CNN Ablation CNN activations No
Shen et al. [106] Reconstruct images fMRI (Human) GAN + CNN Ablation None No
VanRullen and Reddy [107] Reconstructing per-

ceived faces
fMRI (Human) Lin. Reg. + VAE +

GAN
Lin. Reg. + PCA VAE inputs No

Dado et al. [108] Reconstruct perceived
faces

fMRI (Human) GAN VAE + GAN, Eigenfaces GAN inputs No

Kim et al. [109] Reconstruct images Spikes (NHP) Nonlin. Reg. + CNN
Autoencoder

Low-fidelity image No
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Figure 3: Architectures and outputs of neural decoding. We contrast examples of “direct decoding,” in which
the neural network decoder outputs the final desired variable, versus “decoding through intermediate states”, in
which the neural network predicts an intermediate variable that subsequently predicts the final desired variable.
A: Sequential neural data is processed by RNNs that use past context to generate their output (or past and future
in bidirectional RNNs). RNN outputs at each timestep can be mapped to behaviors, e.g., movements, measured
concurrently, e.g., [36]. B: In a Seq2Seq-style RNN, as in Makin et al. [76], the final output of an encoder RNN is
used as the input to a decoding RNN which produces a second sequence of potentially different length, such as the
text representation of speech. C: RNNs can produce an intermediate state to be used in a second decoding step,
such as articulator kinematics (movement of lips, tongue, etc.) [95]. D: Intermediate states can often be structured,
such as a spectrogram [37]. E: Intermediate states can then be fed into an acoustic model such as Wavenet [122] or
a speech synthesizer which produces acoustic waveforms [37, 95]. F: Temporal snapshot neural data, e.g., fMRI,
can be processed by fully-connected networks or CNNs to produce intermediate feature vectors [38]. These feature
vectors can be fed into generative image models, e.g., a GAN, to produce a more realistic looking image [38]

5 The outputs of decoding: behavior and perception

5.1 Movement

Some of the earliest uses of neural decoding were in the motor system [110]. Researchers have used neural activity
from motor cortex to predict many different motor outputs, such as movement kinematics (e.g., position and
velocity), muscle activity (EMG), and broad type of movement. Traditionally, this decoding has used methods
(e.g., Kalman Filter or Wiener Filter) that assumed a linear mapping from neural activity to the motor output,
which has led to many successes [111–115]. To improve the decoders, these methods were extended to allow
specific nonlinearities (e.g., Unscented Kalman Filter, Point Process Filter, and Wiener Cascade [116–120]).
Within the last decade, deep learning methods have become more common, frequently outperforming linear
methods and their direct nonlinear extensions when compared (e.g., [39, 69, 81, 121]). Deep learning has shown
to be a flexible tool for movement decoding, having been used to predict a wide range of movement variables
from several different neural recording modalities (as catalogued in Table 1).

RNNs are by far the most common deep learning architecture for movement decoding. When predicting
a continuous movement variable, there is generally a linear mapping from the RNN’s output to the movement
variable. When classifying movements, there is an additional softmax nonlinearity that determines the movement
with the highest probability. From a deep learning perspective, given that this is a problem of converting one
sequence (a temporal trace of neural activities) into another sequence (motor outputs), it would be expected
that an RNN would be an appropriate architecture. Recurrent architectures also make sense from a scientific
perspective: motor cortical activity has dynamics that are important for producing movements [123], plus
movements themselves have dynamics.

LSTMs have generally been the most common and successful type of RNN for movement decoding [39, 60,
69, 77, 79, 81, 82, 87–89], although other standard types of RNN architectures (e.g., GRUs [80] and echostate
networks [36]) have also proven successful. Additionally, researchers have found that stacking multiple layers of
LSTMs [81, 89] can improve performance beyond a single LSTM [81]. LSTMs are likely successful because they
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are able to learn long-term dependencies better than a standard “vanilla” RNN [27].
A common goal of neural decoding of movement is to be able to create a usable brain computer interface

for patients. While the majority of deep learning uses have been in offline scenarios (decoding after the neural
recording), there are several successful examples of real-time uses of deep learning for movement decoding
[36, 84, 85, 121]. The first use of deep learning for real-time movement decoding was in Sussillo et al. [36].
Monkeys with implanted electrode arrays were able to control the velocity of a cursor on a screen in real time
via the use of an echostate network, which outperformed a Kalman filter. In a more recent example, in human
patients with tetraplegia who had implanted electrode arrays, Schwemmer et al. [84] were able to classify planned
movements of wrist extension, wrist flexion, index extension, and index flexion. This was done by inputting wide-
band activity into an LSTM, followed by a CNN, followed by a fully connected layer for classification. After
classifying the movement type, the authors then applied functional electrical stimulation to activate muscles
according to this neural decoder, so that the patient was able to make these movements in real time.

While there has been great initial success, there are several challenges associated with using deep learning
for real-time decoding for brain computer interfaces. One challenge is that the source of the recorded neural
activity can change across days, for example due to slight movement of implanted electrodes. One approach that
has dealt with this is the multiplicative RNN, an architecture that allows mappings from the neural input to the
motor output to partially change across days [121]. Another approach that helps to utilize data across multiple
days is that of Pandarinath et al. [43], which uses recurrent autoencoders to find a consistent low-dimensional
dynamical model of the data that is shared across days. Incorporating this dynamical model leads to more
accurate low-dimensional representations that are more predictive of movement kinematics. One other approach
is that of [83], which uses adversarial domain adaptation networks in order to align neural recordings across
days.

Another challenge of using deep learning for real-time neural decoding is computation time, as there is the
need to make predictions through the deep learning architecture at very high temporal resolution. When using
a less complicated echostate network, Sussillo et al. [36] were able to decode with less than 25 ms temporal
resolution. However, when using a more complex architecture of LSTMs followed by CNNs, Schwemmer et al.
[84] decoded at 100 ms resolution, slower than our perception. Relatedly, for linear methods that can be fit
rapidly, researchers are able to adapt the neural decoder in real time to better match the subject’s intention
(trying to get to a target) to improve performance [112, 115, 117, 120]. Developing similar approaches for deep
learning based decoders is an exciting, unexplored area.

5.2 Speech

Vocal articulation of speech is a complex behavior that engages a large functional area of the brain to produce
movements that have a high degree of articulatory temporal and spatial precision [124]. Its production is also a
uniquely human ability which limits the recording modalities and neuroscientific interventions that can be used to
study it. Due to the functional and temporal requirements of decoding speech, cortical surface electrical potentials
recorded using ECoG is the typical recording modality used, although penetrating electrodes, MEG, EEG, and
fNIRS are also used [90, 91, 125, 126]. When decoding from ECoG or EEG, researchers commonly use the signals’
high gamma amplitude [57], although some use more broad spectrotemporal features as well [57, 59, 127].

Many approaches to decoding speech from neural signals have used some combination of linear methods and
shallow probabilistic models. Clustering, SVMs, LDA, linear regression, and probabilistic models have been used
with spectrotemporal features of electrical potentials to decode vowel acoustics, speech articulator movements,
phonemes, whole words, and semantic categories [57, 59, 125, 128–131].

Deep learning approaches to decoding speech from neural signals have emerged that can potentially learn
nonlinear mappings (see Table 1). Some of these approaches have operated on temporally segmented neural
data and have thus used fully connected neural network architectures. For example, spectrotemporal features
derived from ECoG or EEG have been used to reconstruct perceived spectrograms, classify words or syllables,
or classify entire phrases [15, 58, 90–93, 127]. These examples with temporally segmented neural data are useful
for increasing understanding about neural representations, and as a step towards decoding natural speech.

Mapping directly from continuous, time-varying neural signals to speech is the goal of speech brain-computer
interfaces [1, 132]. Both convolutional and recurrent networks are able to flexibly decode timeseries data and
are often used for decoding naturalistic speech. Heelan et al. [94] reconstructed perceived speech audio from
multi-unit spike counts from a non-human primate and found that LSTM-based networks outperformed other
traditional and deep models. Speech represented as text does not have a simple one-to-one temporal alignment
to regularly sampled neural signals. For this reason, speech-to-text decoding networks often use architectures
and methods like sequence-to-sequence models or the connectionist temporal classification loss [24, 133], which
are commonly used in machine translation or automated speech recognition applications. As such, several
groups have decoded directly from neural signals to text during speech production or imagined handwriting
using recurrent networks such as sequence-to-sequence models [96–99] (Fig. 3C).

12



For decoding intelligible acoustic speech, it is also common to split neural decoding into a more constrained
neural-to-intermediate mapping, followed by a second stage that maps this intermediate format into an acoustic
waveform using acoustic priors for speech based on deep learning or hand-engineered methods. For instance,
high gamma features recorded using ECoG have been used to decode spectrograms which were fed into a
WaveNet [122] deep network to produce an acoustic waveform [37]. As a specific example of a split decoding setup,
Anumanchipalli et al. [95] trained a bidirectional LSTM to decode articulator kinematic features (movement of
lips, tongue, etc.) from a combination of high gamma amplitude and a low frequency component. The second
stage was a separate bidirectional LSTM which decodes acoustic features (mel-frequency cepstral coefficients,
voicing, etc.) from the decoded articulatory features. Finally, these acoustic features were passed into a speech
synthesizer. Compared to a RNN that skips the intermediate articulator kinemetics stage, their two-stage
method decoded perceptually improved speech acoustics. The second stages do not require invasive neural data
for training and were trained on a larger second corpus.

Deep learning models have improved the accuracy of primarily offline speech decoding tasks. Many of the
preprocessing and decoding methods reviewed here are done offline using acausal or high-latency deep learning
models. Developing deep learning methods, software, and hardware for real-time speech decoding is important
for clinical applications of brain computer interfaces [131, 134].

5.3 Vision

Similar to decoding acoustic speech, decoding visual stimuli from neural signals requires strong image priors due
to the large variability of natural scenes and the relatively small bit-rate of neural recordings. Early attempts to
reconstruct the full visual experience restricted decoding to simple images [135] or relied on a filterbank encoding
model and a large set of natural images as a sampled prior [136]. Qiao et al. [100] solved the simpler task of
classifying perceived object category using one CNN to select a small set of fMRI voxels which were fed into a
second RNN for classification. Similarly, Ellis and Michaelides [101] classified among many visual scenes from
calcium imaging data using feedforward or convolutional neural networks.

As mentioned in Section 2, deep generative image models, such as GANs, can produce realistic images. In
addition, CNNs trained to classify large naturalistic image databases [137] (discriminative models) have been
shown to encode a large amount of textural and semantic meaning in their activations [138], which can be used
as an image prior. Due to the variety of ways that natural image priors can be created with deep networks, there
exist neural decoding methods that combine different aspects of both generative and discriminative networks.

Given a deep generative model of images, a simpler neural decoder can be trained to map from neural data to
the latent space of the model [38, 104, 107, 108], and the generative model can be used for image reconstruction.
As an example, Seeliger et al. [104] trained a Convolutional Generative Adversarial Network (GAN) [33, 34] to
generate grayscale images of objects given a noise vector as input. The parameters of the network were then
frozen. Then, a linear regression model was trained to generate GAN input vectors from fMRI to optimize both
the reconstruction of an image’s individual pixels and higher order image features. Similarly, a linear stage or
combined linear and deep learning reconstruction followed by a deep network that cleans-up the image has been
used with retinal ganglion cell output [35, 109]. Generative models can also be trained to reconstruct images
directly from fMRI responses on real data with data augmentation from a simulated encoding model [102].

Alternatively, generative and discriminative models can be used together. By leveraging a pretrained CNN,
a simple neural decoder can be trained to map neural data to CNN activations that can then be passed into
a convolutional image reconstruction model [103]. Additionally, the input image in a pretrained CNN can be
optimized so that the CNN activations match predictions given by the fMRI responses [105]. Researchers have
also used an end-to-end approach in which they train the generative part directly on neural data with both
an adversarial loss and a pretrained CNN feature loss [106]. Along with acoustic speech, decoding naturalistic
visual stimuli presents one of the best cases to study the use of data-driven priors derived from deep networks.

5.4 Other

While we have chosen to focus on a few decoding outputs that are prevalent in the literature, deep learning has
been used for a myriad of neural decoding applications. For instance, RNNs such as LSTMs have been used
to decode an animal’s location [39, 56, 139, 140] and direction [141] from spiking activity in the hippocampus
and head-direction cells, respectively. Deep networks have been used to decode what is being remembered in
a working memory task from [142] and to predict illness [71–74, 143, 144] from human fMRI. Researchers have
used LSTMs [145] and feedforward neural networks [146] to classify different classes of behaviors, using spiking
activity in animals [146] and fNIRS or fMRI measurements in humans [16, 145]. LSTMs [147, 148] and CNNs
[149] have been used to classify emotions from EEG signals. Feedforward neural networks have been used to
determine the source of a subject’s attention, using EEG in humans [150, 151] and spiking activity in monkeys
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[152]. CNNs [62–64], along with LSTMs [64] have been used to predict a subject’s stage of sleep from their EEG.
For almost any behavioral signal that can be decoded, examples exists of applying deep learning.

6 Discussion

Deep learning is an attractive method for use in neural decoding because of its ability to learn complex, nonlinear
transformations from data. In many of the examples above, deep networks can outperform linear or shallow
methods even on relatively small datasets; however, examples exist where this is not the case, especially when
using fMRI [153, 154] or fNIRS data [155]. Relatedly, there are many times in which using hand-engineered
features can outperform an end-to-end neural network that will learn the features. This is more likely with
limited amounts of data, and also when there is strong prior knowledge about the relevant features. One general
machine learning approach to efficiently use limited data is transfer learning, in which a neural network trained
in one scenario (typically with more data) is used a separate scenario. This has been used in neural decoding to
more effectively train decoders for new subjects [88, 97] and for new predicted outputs [84]. As the capability to
generate ever larger datasets develops with automated, long-term experimental setups for single animals [156]
and large scale recordings across multiple animals [157], deep learning is well poised to take advantage of this
flood of data. As dataset sizes increase, this will also allow more features to be learned through data-driven
network training rather than being selected by-hand.

Although deep learning will inevitably improve decoding accuracy as neuroscientists collect larger datasets,
extracting scientific knowledge from trained networks is still an area of active research. That is, can we understand
the transformations deep networks are learning? In computer vision, layers that include spatial attention [158]
and methods for performing feature attribution [159] have been developed to understand what parts of the input
are important for prediction, although the latter are an active area of research [160]. These methods could be
used to attribute what channels, neurons (e.g. of different genetically-defined cell types), or time-points are most
salient for neural decoding [159]. Additionally, there are methods for understanding deep network representations
in computer vision that examine the representations networks have learned across layers [161, 162]. Using these
methods may help to understand the transformations that occur within neural decoders, however results may be
sensitive to the decoder’s architecture and not purely the data’s structure. While deep learning interpretability
methods are not commonly used on decoders trained on neural data, there are a few examples of networks that
were built with interpretability in mind or were investigated after training [15, 16, 66, 67, 70, 142].

When interpreting neural decoders, it is often assumed that the decoder reveals the information contained
in the brain about the decoded variable. It is important to note that this is only partially true when priors are
being used for decoding [163], which is often the case when decoding a full image or acoustic speech. In these
scenarios, the decoded outputs will be a function of both neural activity and the prior, so one cannot simply
determine what information the brain has about the output.

The software used to create, train, and evaluate deep networks has been steadily developed and is now almost
as easy to use as other standard machine learning methods. A wide range of cost functions, layer types, and
parameter optimization algorithms are implemented and accessible in deep learning libraries such as PyTorch
or TensorFlow [164, 165] and libraries in other programming languages. Like other machine learning methods,
care must be taken to carefully cross-validate results as deep networks can easily overfit to the training data.

In addition to their use in neural decoding, deep learning has other prominent uses within neuroscience
[166, 167]. Neural networks have a long history in neuroscience as models of neural processing [168, 169].
More recently, there has also been a surge of papers using deep networks as encoding models [12, 14, 75].
There has been a specific focus on using the representations learned by deep networks trained to perform
behavioral tasks (e.g., image recognition) to predict neural responses in corresponding brain areas (e.g., across
the visual hierarchy [170]). Combining these multiple complementary approaches is one promising approach to
understanding neural computation.

Future directions

There use of deep learning for neural decoding has greatly increased within the last few years. Here, we highlight
several open challenges and potential future directions for research.

• Increased use of deep learning for online decoding. This will be benefited by speed-ups in computing
performance and reduced latency hardware [171, 172], online adaptation of neural network decoders to
subjects’ intentions [112, 115, 117], and robustness of decoders to signal changes across days [43, 75, 83].

• Keeping pace with the state-of-the-art in deep learning methods. Machine learning datasets are typically
much larger than neural datasets. Do the architectural improvements in deep learning that are beneficial
in other domains translate to neural datasets?
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• Standardized benchmark datasets for better comparisons with strong baseline models and clear cross vali-
dation and evaluation standards [173–175].

• Increased interpretability of the inner-workings of neural decoders, either by specifically creating more
interpretable architectures [66, 70], or by post-hoc analyses of the neural networks [15, 56].

Key Points

• We review many deep learning approaches which have been used to create more accurate and flexible neural
decoders.

• Traditionally, many decoders have used hand-engineered features as inputs; deep learning tools can help
to automatically learn relevant features from neural inputs.

• Pretrained deep learning models can be used as priors for complex decoding targets such as images or
acoustic speech.

• We discuss directions for future research.
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